Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Journal of Environmental Chemical Engineering ; 11(3), 2023.
Article in English | Scopus | ID: covidwho-2293894

ABSTRACT

Ciprofloxacin and ofloxacin belong to a class of antibiotics called Fluoroquinolones (FQs), which have a wide anti-bacterial activity against Gram-positive and Gram-negative bacteria. Since the recent Covid-19 pandemic witnessed a magnanimous rise in the use of antibiotics to prevent secondary bacterial infections, it led to vast production and use of such antibiotics. Ultimately the antibiotics get discharged into the municipal sewer pipes, thereby killing the useful microbial colony. In order to prevent environmental degradation a commercial scale-up of the adsorption of these antibiotics using raw sewage sludge is an absolute necessity. In this study, a continuous adsorption operation is conducted in a packed bed of semi-dried raw sewage sludge to remove the FQs from wastewater. Two transient convective-diffusion models are developed including pseudo-first and second-order kinetics driven depletion terms. The models are optimised using the data collected under various dynamic conditions in order to analyse the performance of the packed bed in terms of bed height, flow rate and initial concentration of the FQs. Damköhler numbers of the FQs are estimated to predict the breakthrough times of both the FQs. The ratios of Damköhler numbers of ciprofloxacin and ofloxacin do not change much with flow rate. In all the experiments, Das << 1 for both the FQs, indicating a faster diffusion process with respect to the rate of pseudo-reaction. Diffusion reaches an ‘equilibrium' well before the reaction achieves pseudo-chemical equilibrium. Ratios of the Damköhler numbers, meant to represent the first-order and second-order convective-diffusion models for ciprofloxacin to ofloxacin is < 1. © 2023 Elsevier Ltd

2.
Sustainability ; 15(8):6773, 2023.
Article in English | ProQuest Central | ID: covidwho-2299300

ABSTRACT

Sludge generation as an organic by-product of wastewater treatment has seen a consistent increase worldwide due to population growth and industrial activities. This poses a chronic challenge regarding management options and environmental concerns. The agricultural valorization of unconventional organic materials has become inevitable, especially in semi-arid and arid countries that suffer from depleted soils and shortages in farm manure supply. High-income countries have also been interested in this recycling practice to mitigate landfilling or incineration issues. Sewage and some industrial sludges contain a complex mixture of beneficial and harmful substances, which varies with the origin of effluents. Therefore, sludge land application should be well managed in order to achieve sustainable agro-environmental goals. This review paper focuses on different aspects related to sludge reuse in agriculture, starting by investigating the diversity of sludge types and composition. In addition to the preponderant urban sewage sludge, the less-studied industrial sludges, such as those generated from pulp and paper mills or gas-to-liquid industries, are hereby addressed as well. Then, post-land application effects are discussed in relation to sludge quality, dose, and reuse conditions. The present paper also examines the disparities between guidelines that determine sludge conformity for land application in various countries or regions. Accordingly, special attention is given to increasing risks related to emerging pollutants in sludge such as pharmaceuticals, which have been overused since the outbreak of COVID-19 pandemic. This exhaustive investigation will assist the establishment of sustainable strategies for the safe agricultural reuse of biosolids.

3.
Process Saf Environ Prot ; 143: 196-203, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-2255461

ABSTRACT

As for the SARS coronavirus in the 2003 epidemic, the presence of SARS-CoV-2 has been demonstrated in faeces and, in some cases, urine of infected people, as well as in wastewater. This paper proposes a critical review of the state of the art regarding studies on the presence of SARS-CoV-2 in wastewater and sewage sludge, the factors affecting its inactivation and the main proposed treatments. In-vitro tests demonstrated low resistance of SARS-CoV-2 to high temperature, while even significant changes in pH would not seem to determine the disappearance of the virus. In real wastewater and in sewage sludge, to date studies on the influence of the different parameters on the inactivation of SARS-CoV-2 are not available. Therefore, studies involving other HCoVs such as SARS-CoV and HCoV-229E have been also considered, in order to formulate a hypothesis regarding its behaviour in sewage and throughout the steps of biological treatments in WWTPs. Finally, SARS-CoV-2 in wastewater might track the epidemic trends: although being extremely promising, an effective and wide application of this approach requires a deeper knowledge of the amounts of viruses excreted through the faeces and the actual detectability of viral RNA in sewage.

4.
Environ Sci Pollut Res Int ; 2022 Nov 12.
Article in English | MEDLINE | ID: covidwho-2272623

ABSTRACT

Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.

5.
Handbook of Environmental Chemistry ; 114:289-305, 2023.
Article in English | Scopus | ID: covidwho-2244290

ABSTRACT

Human pathogenic viruses can be introduced into sewage sludge and soils via fecal material from a variety of human activities. These contaminated matrices can play a substantial role in the dispersion of pathogenic viruses in the environment, constituting a potential public health problem if they enter the water cycle or the food chain. However, the interactions between pathogenic viruses and these matrices have received less attention compared to other environmental compartments. Understanding the presence of viruses, their persistence and fate in solid or semi-solid matrices like sludge and soil is important for the effective control of the infections they may cause. In this chapter, we summarize current knowledge about human pathogenic viruses in sewage sludge and soil, their importance in public health, and the factors that govern their transport and persistence in soil matrices. We also review the occurrence and variety of common and emerging viruses excreted in the feces and their presence in sewage sludge and soil, as well as the potential use of certain viruses as indicators of fecal pollution. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

6.
Chemosphere ; 311, 2023.
Article in English | Scopus | ID: covidwho-2246826

ABSTRACT

Energy crisis and increasing rigorous management standards pose significant challenges for solid waste management worldwide. Several emerging diseases such as COVID-19 aggravated the already complex solid waste management crisis, especially sewage sludge and food waste streams, because of the increasingly large production year by year. As mature waste disposal technologies, landfills, incineration, composting, and some other methods are widespread for solid wastes management. This paper reviews recent advances in key sewage sludge disposal technologies. These include incineration, anaerobic digestion, and valuable products oriented-conversion. Food waste disposal technologies comprised of thermal treatment, fermentation, value-added product conversion, and composting have also been described. The hot topic and dominant research foci of each area are summarized, simultaneously compared with conventional technologies in terms of organic matter degradation or conversion performance, energy generation, and renewable resources production. Future perspectives of each technology that include issues not well understood and predicted challenges are discussed with a positive effect on the full-scale implementation of the discussed disposal methods. © 2022 Elsevier Ltd

7.
Sci Total Environ ; 867: 161527, 2023 Apr 01.
Article in English | MEDLINE | ID: covidwho-2183117

ABSTRACT

Disinfectants are routinely used in human environments to control and prevent the transmission of microbial disease, and this is particularly true during the current COVID-19 crisis. However, it remains unclear whether the increased disinfectant loadings to wastewater treatment plants facilitate the dissemination of antibiotic resistance genes (ARGs) in sewage sludge microbiomes. Here, we investigated the impacts of benzalkonium chlorides (BACs), widely used disinfectants, on ARGs profiles and microbial community structures in sewage sludge by using high-throughput quantitative PCR and Illumina sequencing. A total of 147 unique ARGs and 39 mobile genetic elements (MGEs) were detected in all sewage sludge samples. Our results show that exposure to BACs disinfectants at environmentally relevant concentrations significantly promotes both the diversity and absolute abundance of ARGs in sludge microbiomes, indicating the co-selection of ARGs by BACs disinfectants. The enrichment of ARGs abundance varied from 2.15-fold to 3.63-fold compared to controls. In addition, BACs exposure significantly alters bacterial and protistan communities, resulting in dysbiosis of the sludge microbiota. The Mantel test and Procrustes analysis confirm that bacterial communities are significantly correlated with ARGs profiles under BACs treatments. The structural equation model explains 83.8 % of the total ARGs variation and further illustrates that the absolute abundance of MGEs exerts greater impacts on the variation of absolute abundance of ARGs than microbial communities under BACs exposure, suggesting BACs may promote antibiotic resistance by enhancing the horizontal gene transfer of ARGs across sludge microbiomes. Collectively, our results provide new insights into the proliferation of antibiotic resistance through disinfectant usage during the pandemic and highlight the necessity to minimize the environmental release of disinfectants into the non-target environment for combating antibiotic resistance.


Subject(s)
COVID-19 , Disinfectants , Microbiota , Humans , Sewage/microbiology , Benzalkonium Compounds/pharmacology , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Bacteria/genetics
8.
Journal of Environmental Chemical Engineering ; : 108704, 2022.
Article in English | ScienceDirect | ID: covidwho-2061501

ABSTRACT

This study investigated the use of sludge-based activated carbon (SBAC) sorbent as an integrated waste-to-resources approach for the removal of contaminants from wastewater. We measured the ability of SBAC sorbents from two types of municipal sewage sludge (SS) precursors (thickened waste SS “TWSS-SBAC” and biosolids “Bio-SBAC”) from a Canadian wastewater treatment plant (WWTP) to stabilise emerging contaminants (ECs) from precursor SS and to remove ECs from the discharged effluent. The ECs were from pharmaceutical and personal care products (PPCPs), including antibiotics, disinfectants, and antibacterial hand-sanitisers and soaps, which were commonly used during the COVID-19 (coronavirus disease of 2019) pandemic. We measured the removal efficacy of Bio-SBAC at two dosages (1g/L and 10g/L) and TWSS-SBAC at one dosage (1g/L) via 30-min batch adsorption tests for eleven PPCPs at mean concentrations of 2–2337ng/L in the discharged effluent, and compared the results with those of other techniques and sorbents reported in literature. At both dosages, Bio-SBAC removed PPCPs, including four blood regulator compounds that have been extensively used since the pandemic outbreak (furosemide, gemfibrozil, glyburide, and warfarin), with their levels decreasing below the detection limit. The percentage removal for ibuprofen, 2-hydroxy-ibuprofen, and naproxen were 91.6–99.8% using 1g/L. The antimicrobial compounds triclosan and triclocarban were completely removed at both dosages. Ninety-nine percentage of bisphenol A was removed at 1g/L dosage and was completely removed at 10g/L. TWSS-SBAC showed similar performance as Bio-SBAC in removing PPCPs from the final effluent to improve the quality of wastewater discharged from a WWTP.

9.
Handbook of Environmental Chemistry ; 114:289-305, 2023.
Article in English | Scopus | ID: covidwho-2047962

ABSTRACT

Human pathogenic viruses can be introduced into sewage sludge and soils via fecal material from a variety of human activities. These contaminated matrices can play a substantial role in the dispersion of pathogenic viruses in the environment, constituting a potential public health problem if they enter the water cycle or the food chain. However, the interactions between pathogenic viruses and these matrices have received less attention compared to other environmental compartments. Understanding the presence of viruses, their persistence and fate in solid or semi-solid matrices like sludge and soil is important for the effective control of the infections they may cause. In this chapter, we summarize current knowledge about human pathogenic viruses in sewage sludge and soil, their importance in public health, and the factors that govern their transport and persistence in soil matrices. We also review the occurrence and variety of common and emerging viruses excreted in the feces and their presence in sewage sludge and soil, as well as the potential use of certain viruses as indicators of fecal pollution. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

10.
Sustainability ; 14(10):5910, 2022.
Article in English | ProQuest Central | ID: covidwho-1870718

ABSTRACT

Various wastewater treatment technologies are available today and biological processes are predominantly used in these technologies. Increasing wastewater treatment systems produces large amounts of sewage sludge with variable quantities and qualities, which must be properly managed. Anaerobic and aerobic digestion and composting are major strategies to treat this sludge. The main indicators of biological stabilization are volatile fatty acids (VFAs), volatile solids (VS), the carbon/nitrogen (C/N) ratio, humic substances (HS), the total organic carbon (TOC), the carbon dioxide (CO2) evolution rate, the specific oxygen uptake rate (SOUR), and the Dewar test;however, different criteria exist for the same indicators. Although there is no consensus for defining the stability of sewage sludge (biosolids) in the research and regulations reviewed, controlling the biological degradation, vector attraction, and odor determines the biological stabilization of sewage sludge. Because pollutants and pathogens are not completely removed in biological stabilization processes, further treatments to improve the quality of biosolids and to ensure their safe use should be explored.

11.
Environ Pollut ; 305: 119312, 2022 Jul 15.
Article in English | MEDLINE | ID: covidwho-1796873

ABSTRACT

Reuse of sewage sludge is a general trend and land application is an essential way to reuse sludge. The outbreak of coronavirus disease has raised concerns about human pathogens and their serious threat to public health. The risk of pathogenic bacterial contamination from land application of municipal sludge has not been well assessed. The purpose of this study was to investigate the presence of pathogenic bacteria in municipal sewage sludge and to examine the survival potential of certain multidrug-resistant enteroaggregative Escherichia coli (EAEC) strain isolated from sewage sludge during heat treatment. The sewage sludge produced in the two wastewater treatment plants contained pathogenic bacteria such as pathogenic E. coli, Shigella flexneri, and Citrobacter freundii. The environmental strain of EAEC isolated from the sludge was resistant to eight types of antibiotics. It could also enter the dormant state after 4.5 h of treatment at 55 °C and regrow at 37 °C, while maintaining its antibiotic resistance. Our results indicate that the dormancy of EAEC might be why it is heat-resistant and could not be killed completely during the sludge heat treatment process. Owing to the regrowth of the dormant pathogenic bacteria, it is risky to apply the sludge to land even if the sludge is heat-treated, and there is also a risk of spreading antibiotic resistance.


Subject(s)
Escherichia coli Infections , Escherichia coli , Anti-Bacterial Agents/toxicity , Escherichia coli Infections/epidemiology , Hot Temperature , Humans , Sewage/microbiology
12.
Sci Total Environ ; 824: 153886, 2022 Jun 10.
Article in English | MEDLINE | ID: covidwho-1692894

ABSTRACT

Enteric viruses are of great importance in wastewater due to their high excretion from infected individuals, low removal in wastewater treatment processes, long-time survival in the environment, and low infectious dose. Among the other viruses, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) surveillance in wastewater systems has received particular attention as a result of the current COVID-19 epidemic. Viruses adhering to solid particles in wastewater treatment processes will end up as sewage sludge, and therefore insufficient sludge treatment may result in viral particles dissemination into the environment. Here, we review data on viruses' presence in sewage sludge, their detection and concentration methods, and information on human health issues associated with sewage sludge land application. We used combinations of the following keywords in the Scopus, Web of Science (WOS), and PubMed databases, which were published between 2010 and January 21th, 2022: sludge (sewage sludge, biosolids, sewage solids, wastewater solids) and virus (enteric virus, viral particles, viral contamination, SARS-CoV-2, coronavirus). The sources were searched twice, once with and then without the common enteric virus names (adenovirus, rotavirus, norovirus, enterovirus, hepatitis A virus). Studies suggest adenovirus and norovirus as the most prevalent enteric viruses in sewage sludge. Indeed, other viruses include rotavirus, hepatitis A virus, and enterovirus were frequently found in sewage sludge samples. Untreated biological sludge and thickened sludge showed more viral contamination level than digested sludge and the lowest prevalence of viruses was reported in lime stabilized sludge. The review reveals that land application of sewage sludge may pose viral infection risks to people due to accidently ingestion of sludge or intake of crops grown in biosolids amended soil. Moreover, contamination of groundwater and/or surface water may occur due to land application of sewage sludge.


Subject(s)
COVID-19 , Enterovirus , Norovirus , Rotavirus , Viruses , Adenoviridae , Biosolids , Humans , SARS-CoV-2 , Sewage , Wastewater
13.
J Hazard Mater ; 425: 127901, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1573490

ABSTRACT

The aim of this work was to evaluate the adsorption capacity and mechanism of two antiviral drugs AVDs (lopinavir (LOP) and ritonavir (RIT)) on three various sewage sludges (SSLs). The results showed that SSLs differed in the structure and chemical composition and LOP and RIT had a high affinity to the studied SSLs (Kd in ranges 2076-3449 L/kg). The adsorption capacities differed between SSLs and ranged 7.55-8.71 mg/g (RIT) and 8.10-8.64 mg/g (LOP). The Freundlich model provided a best fitting of adsorption isotherms of all AVDs-SSLs. The adsorption kinetics were best described by pseudo-second order kinetic model. The adsorption of LOP and RIT on SSLs was exothermic, spontaneous, and thermodynamically feasible. The sorption of LOP and RIT to SSLs was complex due to the diverse chemical composition of SSLs and the differences in the chemical structure of AVDs. Analysis of binary solution of both AVDs showed the competition effect between AVDs and a decrease in adsorption efficiency (3-17%) compared to single solutions. The amount of desorbed AVDs from all SSLs was low (less than 15%). The findings of the present work are significant in the prediction of fate and persistence of AVDs on SSLs in the context of their further transmission and possible environmental contamination.


Subject(s)
Sewage , Water Pollutants, Chemical , Adsorption , Antiviral Agents , Kinetics , Lopinavir , Ritonavir , Water Pollutants, Chemical/analysis
14.
Environ Res ; 206: 112585, 2022 04 15.
Article in English | MEDLINE | ID: covidwho-1587836

ABSTRACT

Anaerobic digestion is a consolidated technology to convert sewage sludge and other organic wastes into biogas and a nutrient-rich fertilizer (i.e. digestate). The origin of sewage sludge does not exclude the potential presence of pathogens (e.g. Salmonella spp. and SARS-CoV-2) in mature digestate that hence could represent a source of sanitary concerns when it is spread on soil for agriculture purpose. Therefore, an experimental study aimed at proving the sanitizing effect of a full scale thermophilic high solids anaerobic digestion process was conducted by monitoring the hygienic characteristics of mature digestate. Although Salmonella spp. was detected in the sewage sludge fed to the full scale plant, the anaerobic digestion treatment demonstrated sanitization capacity since the monitored pathogens were never found in the mature digestate over the entire duration of the monitoring survey. Furthermore, tests on the regrowth of Salmonella Typhimurium and Escherichia coli, artificially inoculated on mature digestate, were also conducted under both anaerobic and aerobic conditions with the aim to assess the effectiveness of mature digestate as microbial growth medium. Concentrations of Salmonella Typhimurium and Escherichia coli were drastically reduced after a short time of incubation under anaerobic process and the two microorganisms already resulted undetectable after 24-48 h, whereas, under aerobic conditions, two microorganisms' concentrations were stably high for longer than 10 days. The combination of no free oxygen, high temperature, anaerobic metabolites (e.g. total ammonium nitrogen, and volatile fatty acids) production, bacteria competition and lack of nutritional elements in mature digestate considerably reduced in 24-48 h the sanitary risks associated to accidently contaminated digestate. Furthermore, a SARS-CoV-2 monitoring survey on mature digestate during 13 months, resulted in the absence of the virus RNA in the analyzed digestate.


Subject(s)
COVID-19 , Sewage , Anaerobiosis , Bioreactors , Digestion , Escherichia coli , Humans , Methane , SARS-CoV-2 , Salmonella typhimurium/genetics
15.
Water Res ; 210: 117995, 2022 Feb 15.
Article in English | MEDLINE | ID: covidwho-1577771

ABSTRACT

Sewage sludge, as a reservoir of viruses, may pose threats to human health. Understanding how virus particles interact with sludge is the key to controlling virus exposure and transmission. In this study, we investigated the recovery, survivability, and sorption of four typical virus surrogates with different structures (Phi6, MS2, T4, and Phix174) in sewage sludge. The most effective elution method varies by viral analyte, while the ultrafiltration method could significantly reduce the recovery loss for all four viruses. Compared with nonenveloped viruses, the poor recoveries of Phi6 during elution (<15%) limited its efficient detection. The inactivation kinetics of four viruses in solid-containing sludge were significantly faster than those in solid-removed samples at 25 °C, indicating that the solid fraction of sludge played an important role in virus inactivation. Although enveloped Phi6 was more vulnerable in both solid-removed and solid-containing sludge samples, it could remain viable for several hours at 25 °C and several days at 4 °C, which may pose an infection risk during sludge collection, transportation, and treatment process. The adsorption and desorption behavior of viruses in sludge could be affected by virus envelope structure, capsid proteins, and virus particle size. Phi6 adsorption to sludge was great with log KF of 6.51 ± 0.53, followed by Phix174, MS2, and T4. Additionally, more than 95% of Phi6, MS2, and T4 adsorbed to sludge were strongly bound, and a considerable fraction of strongly-bound virus was confirmed to retain viability. These results shed light on the environmental behavior of viruses in sewage sludge and provide a theoretical basis for the risk assessment for sludge treatment and disposal.


Subject(s)
Sewage , Viruses , DNA Viruses , Humans , Ultrafiltration , Virus Inactivation
16.
Environ Res ; 203: 111839, 2022 01.
Article in English | MEDLINE | ID: covidwho-1340650

ABSTRACT

This review discusses the techniques available for detecting and inactivating of pathogens in municipal wastewater, landfill leachate, and solid waste. In view of the current COVID-19 pandemic, SARS-CoV-2 is being given special attention, with a thorough examination of all possible transmission pathways linked to the selected waste matrices. Despite the lack of works focused on landfill leachate, a systematic review method, based on cluster analysis, allows to analyze the available papers devoted to sewage sludge and wastewater, allowing to focalize the work on technologies able to detect and treat pathogens. In this work, great attention is also devoted to infectivity and transmission mechanisms of SARS-CoV-2. Moreover, the literature analysis shows that sewage sludge and landfill leachate seem to have a remote chance to act as a virus transmission route (pollution-to-human transmission) due to improper collection and treatment of municipal wastewater and solid waste. However due to the incertitude about virus infectivity, these possibilities cannot be excluded and need further investigation. As a conclusion, this paper shows that additional research is required not only on the coronavirus-specific disinfection, but also the regular surveillance or monitoring of viral loads in sewage sludge, wastewater, and landfill leachate. The disinfection strategies need to be optimized in terms of dosage and potential adverse impacts like antimicrobial resistance, among many other factors. Finally, the presence of SARS-CoV-2 and other pathogenic microorganisms in sewage sludge, wastewater, and landfill leachate can hamper the possibility to ensure safe water and public health in economically marginalized countries and hinder the realization of the United Nations' sustainable development goals (SDGs).


Subject(s)
COVID-19 , Water Pollutants, Chemical , Humans , Pandemics , SARS-CoV-2 , Solid Waste/analysis , Waste Disposal Facilities , Wastewater , Water Pollutants, Chemical/analysis
17.
J Environ Manage ; 282: 111966, 2021 Mar 15.
Article in English | MEDLINE | ID: covidwho-1065317

ABSTRACT

Circular economy principles were adopted by European Commission, to support a sustainable growth. They contain general rules that should be considered in all situations. At present, during pandemic, some waste disposal practices are under evaluation to guarantee safety conditions. For example, in view of the recent results reporting the presence of SARS-CoV-2 virus in sewage sludge, the possibility that it diffuses in the environment is alarming. The situation may result critical in densely populated cities, which are the largest sources of sewage sludge. In this frame the diffused practice of reuse of this waste in agriculture is under revision. In this context, incineration may represent a valuable alternative strategy to manage sewage sludge during pandemic. Indeed, due to thermal treatment, the destruction of organic micropollutants and pathogens, eventually present in the waste, is guarantee. Moreover, it is fundamental to highlight that also if the management of sewage sludge changes, the ash resulting from its combustion may have suitable reuse opportunities, and their landfilling should be avoided. This work presents the available possibilities of sewage sludge ash recovery in building applications and shows the results obtained by the analysis of their sustainability. The approach is based on the use of embodied energy and carbon footprint values, to make a simple and fast new method able to be a suitable tool to support and promote sustainability also in critical situations (such as pandemic) and when all the information about a technology are not available, making not possible to perform a full-LCA approach. This work aims to be not only a reference paper for promotion of strategies able to increase waste management safety, but also an example showing that circular economy principles should be pursued also if boundary conditions can change.


Subject(s)
COVID-19 , Sewage , Cities , Humans , Incineration , Pandemics , SARS-CoV-2
18.
Process Saf Environ Prot ; 146: 464-472, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-947349

ABSTRACT

The impacts of different operational temperatures, and organic load (OL) on the fate of SARS-CoV-2 during the anaerobic co-digestion of food waste (FW) and sewage sludge (SS) was evaluated. The lab-scaled batch reactors (i.e. R1-R7) were performed under psychrophilic, mesophilic, and thermophilic conditions and the OL of systems was 1.5, 3.5, 6 gVS/L. The performance parameters showed that at higher OL the stability of systems failed and low biogas was produced. In contrast, increasing of operational temperature of systems induced more biogas generation due to the increment of metabolic activity of bacteria. Therefore, R1-R7 achieved biogas yield of 202.5, 249, 187, 260, 246, 163, and 300 mL/gVS respectively. Both SARS-CoV-2 genes i.e. ORF1ab, and N genes were detected in the effluent of psychrophilic reactors i.e. R1, and R2, with a total concentration of 46 × 103, and 11 × 103 copies/L respectively. In R3, no viral genes were observed, when the VFAs was accumulated up to 2000 mg/L and caused a pH drop to 5.6. At the mesophilic condition, the viral concentration was significantly declined, and no viral genes were observed at an OL of 3.5 gVS/L. Furthermore, the synergistic effect of temperature and accumulation of intermediate metabolites provided a sever condition for SARS-CoV-2 survival at an operational temperature and OL of 50 °C, and 1.5 gVS/L respectively.

19.
Health Care Manag Sci ; 24(2): 320-329, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-893305

ABSTRACT

Ascertaining the state of coronavirus outbreaks is crucial for public health decision-making. Absent repeated representative viral test samples in the population, public health officials and researchers alike have relied on lagging indicators of infection to make inferences about the direction of the outbreak and attendant policy decisions. Recently researchers have shown that SARS-CoV-2 RNA can be detected in municipal sewage sludge with measured RNA concentrations rising and falling suggestively in the shape of an epidemic curve while providing an earlier signal of infection than hospital admissions data. The present paper presents a SARS-CoV-2 epidemic model to serve as a basis for estimating the incidence of infection, and shows mathematically how modeled transmission dynamics translate into infection indicators by incorporating probability distributions for indicator-specific time lags from infection. Hospital admissions and SARS-CoV-2 RNA in municipal sewage sludge are simultaneously modeled via maximum likelihood scaling to the underlying transmission model. The results demonstrate that both data series plausibly follow from the transmission model specified and provide a 95% confidence interval estimate of the reproductive number R0 ≈ 2.4 ± 0.2. Sensitivity analysis accounting for alternative lag distributions from infection until hospitalization and sludge RNA concentration respectively suggests that the detection of viral RNA in sewage sludge leads hospital admissions by 3 to 5 days on average. The analysis suggests that stay-at-home restrictions plausibly removed 89% of the population from the risk of infection with the remaining 11% exposed to an unmitigated outbreak that infected 9.3% of the total population.


Subject(s)
COVID-19 , Hospitalization/trends , RNA, Viral/isolation & purification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sewage/microbiology , Algorithms , COVID-19/transmission , Epidemics , Forecasting , Humans , Sensitivity and Specificity
20.
Sci Total Environ ; 727: 138647, 2020 Jul 20.
Article in English | MEDLINE | ID: covidwho-101492

ABSTRACT

In view of the current situation regarding the Covid-19 disease, a discussion is proposed on the need for research focusing on the presence and evolution of the SARS-CoV-2 virus in water, soils and other environmental compartments, reached through wastewater and sewage sludge spreading. Also, the evaluation of current treatments for wastewater and sewage sludge, as well as the eventual development of new specific techniques, based on sorption, nanotechnology, etc., would be of great interest for controlling the environmental dissemination of these viruses in the current and eventual future outbreaks.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , COVID-19 , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL